

Digital Advanced Sensors

Sensing Control Leading | Sensor Specialized Company

CANbus Inclinometer

JSENS-IN

High performance MEMS based inclinometer (tilt sensor)

Perfectly applicable with CANopen and SAE-J1939

Micro-Processor mounted for stable sensing and data processing

Black-rubber coated high strength plastic housing

Customized specifications for applying various industry areas

CANbus Inclinometer

JSENS-IN

To respond CAN that becoming mainstream communication standard for mobile vehicles, newgeneration sensor series which perfectly applicable for CANopen and SAE-J1939 are now released. Introduce the series of high reliable CANbus sensors exceed performances of current analog and serial communication.

```
E (E
```

Ø	X+	
		ľ

Specifications

Item	Specification		Remarks
Measuring	Uniaxial	±180°	Settable
Range	Biaxial	±90°	settable
Accuracy	0.1°		
Non-Linearity	0.25% FS		
Response	<0.3sec		10deg/sec
Output Interval	10msec		
Output	CANopen SAE-J1939		
Power Source	10 ~ 30Vdc		
Current Consumption	< 60mA		@12Vdc
Operating Temp.	-20℃ ~ +85℃		
Waterproof	IP66		
Dimensions	W40 x H40 x D16mm		Without mount
Weight	40g		
Cable	Delphi 1216-2833		500mm

- Measuring Range
 e.g. -30 ° ~ +90 ° / -30 ° ~ +60 °
- Biaxial : Each axis within $\pm 5^{\circ} \sim \pm 90^{\circ}$
- The min/max angle must satisfy each axis' designated range.

Please inquire separately for less than -3 $^{\circ}$ ~ +3 $^{\circ}$ (deg)

 ±90° (deg) specification, the error range increases at angles exceeding ±85° (deg).

Sensing Directions

X-axis, Floor Mount	X-axis, Wall Mount	
CW+	CW+	
Y-axis, Floor Mount	Y-axis, Wall Mount	
CW+	CW+	

Wiring Connections

Axis	Color	Analog	CANbus
Uniaxial	RED	V+	
	BLACK	GND (COM)	
	GREEN	X+	CAN H
Biaxial	WHITE	Y+	CAN L

- JSENS series is designed for Delphi 1216-2833 plug. Harness can be ordered optionally for wiring.
- Uniaxial doesn't use the white wire.

Sensor Specialized

Sensing Control Leading

CANbus Inclinometer

JSENS-IN

DAS Digital Advanced Sensors

Sensing Control Leading Sensor Specialized

Analog Data Descriptions

Deg. From Analog - Vdc output

Angle = $\left(\frac{\text{Measuring Range}}{\text{Output V Range}}\right) \times (\text{Output V} - \text{Zero offset})$

- Measuring Range = max range min range
- Output V Range
 = maximum output V minimum output V
 = 4.5V 0.5V = 4V
- Zero offset = 2.5V

e.g. Measuring range ±90 deg, Output 3.5V

Angle =
$$\left(\frac{+90 - (-90)}{4}\right) \times (3.5 - 2.5) = +45^{\circ}$$

Ordering Code

1	Axis	S D	Uniaxial Biaxial	
2	Output	CO CJ	CANopen Protocol SAE-J1939 Protocol	
3	Range	Set measuring mount		
4	Attachment Direction	F W	Floor mount Wall mount	
5	Rotational Direction	C NC	Terminating Resistance (default) Non-Terminating Resistance	

- Code format : JSENS-IN-[①]-[②]-[③]-[④]-[⑤] e.g. JSENS-IN-S-CO-180-F-C
- Optional Plug harness: Delphi 1216-2833 COB ID : Settable within HEX 201~27F
- Termination resistance applies only to CAN communication specifications

CAN Protocol

- Bitrate : 500kpbs
- Transmit Interval : 10ms
- Transmit Start : Automatically
- Default COB ID (HEX) : 0x0A
- Output data includes only angular data.
- Refer each protocol manual for CANopen and SAE-J1939.
- ※ CANopen Inclinometer Protocol
- ※ SAE-J1939 Sensor Protocol

Notes

- Ground connection is recommended in noise occurred environment.
- MEMS based inclinometer (tilt sensor) measure tilt (degree) by gravity. Check sensing directions before use.
- Check wiring connections before use.
- 12 months warranty is provided after released. Warranty provided only in case of using for designed purpose correctly.
- Specifications, design and components can bd changed without prior notice to improve its performances.

DAS Co., Ltd.

128 Bibong-ro, Bibong-myeon, Hwaseong-si, Gyeonggi-do, 18284 Republic of Korea TEL : +82 31) 356-3541 E-mail : <u>overseas@das-co.com</u> Web : <u>http://das-co.com</u>